
Tc~mhedron Vol 47. No 2, pp 333342.1991 oo4o-4020/91 $3 oo+ 00 

Rmtcd m Gnu Bntam 0 1991 Pergamon Press p 

ARVLATlON OF POTASSIUM 2,4_PENTANEDIONATE VIA SRNl ON DIAZOSULFIDES 

Carlo Dell’Erba, Marlno Novl,* Glovannl Petrlllo, Clnzla Tavanl, and Pa010 Sellandl 

I.stUo d/ Chrmlca Orgamca, 

C N R Centro d! Studfo WI Dw//ordr e lore App/~caz~onr, 

Corso Europa 26, 16132 Genova, /ta/y 

(Recewcd In UK 18 September 1990) 

Summarv; Potassium 2,4_pentanedionate reacts with dlazosulfides 
(E)-1 and (Z)-2 in DMSO to give 3-aryl-2,4-pentanedlones 3 via 
an SRNl process. Advantages and drawbacks of such new access to 
3 are reported together with relevant mechanlstlc implications. 

The large number of lnvestlgatlons concerning the arylation of active 

methylene compounds mirror the importance that the relevant arylated 

products have as synthetic targets. Consistently, a survey of current 

arylatlon methods offers a wide panorama lncludlng: a) SNAr or aryne 

substitutions respectively on activated' and unactivated2 haloarenes; b) 

Pd-catalyzed substltutlons on halobenzenes;3 c) copper-catalyzed 

substltutlons of the halogen of o-halogenoarenecarboxylic acids; 4 d) 
arYlatiOnS employing either diaryliodonlum saltssr6 or organoleadTg8 and 

organoblsmuth7flg reagents; e) reactlons via cyclopentadienyllron complexes 

of chloroarenes; lo f) homolytic substitution of aromatic hydrocarbons 

induced by either Mn(III),ll Ce(Iv),12 or anodic oxldatlon13 of p- 

dlcarbonyl compounds; g) free-radical chain arylatlon of 2,4-pentanedlone 

by action of reducing metal salts on arenedlazonlum tetrafluoroborates;14 

h) SRN 1 reactions of enolates with haloarenes.15-18 As regards their 

general appllcablllty, however, each of the above methods appears to 

Suffer from some practical disadvantages and/or llmltatlons. 

As an alternative to the exlstlng methodology it was envisaged, on the 

basis of our previous studies,1g-23 that dlazosulfldes (Ar-N=N-SR), 

readily accessible from the corresponding arylamines, might serve as 

convenient substrates for the 'RN' arylatlon of active methylene 

compounds. In this line, we report herein on the synthesis of some 3-aryl- 

2,4pentanedlones 3 by reaction of (E)-arylazo phenyl sulfides (E)-1 and 

(Z)-arylazo &&-butyl sulfides (Z)-2 with potassium 2,4-pentanedionate In 
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Results and Discussion 

The data reported ln the Table show that the reaction of a tenfold 

excess of potassium 2,4_pentanedionate (generated ln situ by addition of 

the diketone to an equimolar amount of commercial potassium m- 

butoxide) with diazosulfides (E)-1 and (Z)-2 In DMSO gives variable yields 

of the arylation products 3. 

The formation of products 3 1s belreved1g-23 to occur via an SRNl 

process30 involving an initial single-electron transfer [step (l)] from 

the pentanedionate anion to the substrate to form the corresponding 

radical anion (1' or 2') which enters a typical SRNl propagation cycle 

[steps w-(4)1. It should be stressed that, though on the whole the 

RS-N=N- group behaves as leaving group, the most likely primary event of 

Step (2) is the cleavage of the N-S bond to give a dlazenyl radical 

precursor of the aryl radical. 

Ar-N=N-SR + Ac2CH- W 1' (or 2') + Ac2CH* 
(E)-1 or (Z)-2 

1' (or 2s) - Are + N2 + RS- 

Are + Ac2CH- _ Ar-CHAc2z 

3s 

(1) 

(2) 

(3) 

3; + Ar-N=N-SR + 3 + 1 (or 2;) (4) 
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Table. Reactions of diazosulfides 1 and 2 with potassium 2,4-pentane- 

dionate in DMSO a 

Expt. 
no. Diazosulfide Conditions b 

3a-n 
yield (%) crd 

1 (E)-la 

2 (E)-lb 

3 (E)-lb 

4 (E)-lb 

5 (Z)-2b 

6 (Z)-2b 

7 (E)-2b 

8 (E)-lc 

9 (Z)-2c 

10 (Z)-2d 

11 (Z)-2e 

12 (Z)-2f 

13 (E)-lg 

14 (Z)-29 

15 (Z)-2h 

16 (Z)-21 

17 (Z)-2j 

18 (E)-lk 

19 (Z)-2k 

20 (Z)-21 

21 (Z)-2m 

22 (Z)-2n 

LL, 5 h 72 

LL, 0.5 h 60 

LL, 0.5 he 46 

LL, 0.5 hf 39 

I, 26 h 74 ad 

CPE, 0.43 F/mol 69 h 

CPE, 0.56 F/m01 73 h 

I, 1.5 h 48 

I, 28 h 45 bd 

I, 27 h 64 

I, 2.5 h 43 Ad 

1, 15 h 9 

LL, 3.5 h + I, 1 h 71 

I, 23 h 51 kd 

I, 5 h 84 

1, 2.5 h 58 ' 

I, 3 h 74 

I, 0.75 h 67 

I, 22 h 77 

I, 6 h 7 

I, 8 h 26 

I, 17 h 60 

’ [Dlazosulflde] = 0 065 M, [Ac2CH-K+] = 0 650 M, unless otherwlse specrfied b Expenments were carried out ether 

at the laboratory light (LL), or under irradtation (I) by a sunlamp, or by constant potential electrolysis (CPE) ’ Yields refer 

to products isolated by column chromatography, unless differently stated d In expts 5, 9, 1 I, 14. and 16 the unreacted 

substrate was found by ‘H NMR to be partially lsomenzed into the (E)-form e (Ac,CH-K+] = 0 33 M f [Ac2CH-K+] 
= 0 13 M g 9% of unreacted substrate recovered h Determined by ‘H NMR ’ 25% of unreacted substrate recovered 

’ 23% of unreacted substrate recovered k 21% of unreacted substrate recovered ’ 12% of unreacted substrate 

recovered 
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The results obtained show that while the reactions on diazosulfides 

(E)-1 are mostly spontaneous processes (although irradiation does increase 

the overall reaction rate), photostimulation by a sunlamp is needed to 

carry out experiments on diazosulfides (Z)-2. The differential reactivity 

of the two kinds of substrates is well evidenced when comparing expts 2 

and 5 or, more closely, expts 8 and 9 which were carried out under similar 

(irradiation) conditions: the photo-induced reaction on (E)-lc goes to 

Completion in 1.5 hr, while with (Z)-2c, after 28 hr 25% of unreacted 

substrate is recovered, which was partially lsomerlzed Into the more 

stable (E)-isomer.31 In the light of the involvement of an SZNl mechanism, 

the lower reactivity of S-tert-butyl dlazosulfides (Z)-2, which has been 

already observed in the reactions with aryloxides,23 most likely is the 

result of a concomitance of factors: i) a more negative reduction 

potential of (Z)-2 with respect to the corresponding S-phenyl derivative 

(E)-1,23 which negatively influences both the lnltiation step (1) and the 

propagation step (4); ii) a slower fragmentation of radical anions 2; with 

respect to the corresponding 1; in consequence of a presumable higher 

energy of the N-S bond. Actually, S-tert-butyl diazosulfides (Z)-2 

generally show greater thermal stability than the corresponding 

(E)-1.28,32 On a practical point of view, the greater stability of 

diazosulfides (Z)-2 represents an advantage because, in the first place, 

they are more easily purifiable e.g. by crystallization and/or 

chromatography and, in the second place, their use allows a better 

definition of the applicability range of the studied reactions without 

complications brought about by some lnstablllty of the substrate, which 

would affect the significance of the outcome. 

Besides the above practical advantages, the fact that, at variance of 

the S-phenyl analogues, diazosulfides (Z)-2 do not react spontaneously 

with potassium 2,4-pentanedlonate allows to attain further evidences for 

the mechanism of the studied reactions. In fact, besides the catalytic 

effect of light, the SRNl character of the system herein could be 

confirmed by electrochemical experiments carried out on both (Z)- and 

(E)-2b [this last kind of dlazosulflde was studled because a more or less 

advanced (Z)-2 to (E)-2 lsomerization was always observed in the course of 

the studied reactions]. The cyclovoltammetric analysis of the two 

substrates above showed a sharp decrease in the height of their 

irreversible reduction peak by addltlon of increasing amounts of potassium 

2,4_pentanedionate. Such behaviour is indicatlve33 of an electrocatalytic 

process well in agreement with the expectation of a chain process 

consecutive to the formation of the substrate radical anion at the cathode 
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surface. On a more quantitative basis the results of preparative 

electrolyses (expts 6 and 7), carried out at the potential of the first 

reduction wave of the substrate on either (Z)-2b or (E)-2b and in the 

presence of a tenfold excess of potassium 2,4-pentanedionate, showed the 

formation of the arylation product 3b in yields comparable to those 

obtained (expt. 5) in the photostimulated reaction on (Z)-2b. This last 

outcome together with the values of 0.43 and 0.56 electrons per molecule, 

obtained by chronocoulometry of the same experiments, leaves little doubts 

about the intervention of a chain process In the system herein. 

Further analysis of the data reported ln the Table shows that, in 

agreement with previous results on the SRNl reactivity of the same 

dlazosulfides with carbon nucleophiles20t22R23 and of halobenzenes with 

monoanions of /3-dicarbonyl compounds, 15t17r34-38 the yields of arylation 

products are satisfactory provided that an electronwlthdrawing substituent 

is present In the Ar of (E)-1 and (Z)-2. Thus dlazosulfldes (Z)-2f and 

(Z)-21 gave only trace amounts of the corresponding a-arylated-6- 

dlcarbonyl derivatives, whose yields slightly improve In the case of the 

2-naphthyl derivative (Z)-2m and become again satisfactory with the 3- 

pyridyl analogue (Z)-2n. As a matter of fact, the lnltlal use of enolates 

of P-dlcarbonyl compounds in SRNl reactions was dlsappointlng as the 

monoanions from malonlc esters, 34-37 acetoacetic esters, 34,36,37 and 

/3-dlketones34s36-38 all failed to react with phenyl radicals and even34 

with the more electrophllic 2-qulnolyl radicals. Later on, the influence 

of either a cyano15t17r18 or a benzoyl17 group In the aryl moiety of 

haloarenes In facilitating SRNl reactions with monoanions of active 

methylene compounds has been evidenced; such favourable effect has been 

attributed15 a) to a faster aryl radical/nucleophile coupling due to an 

increased electrophlllclty of Are and b) to a more favoured electron- 

transfer from the radical anion of the substltutron product to the 

substrate. In the system hereln, as the propagation step (4) should be 

thermodinamlcally and kinetically favoured In all cases,3g the meagre 

yield of arylatlon product observed with (Z)-2f, (z)-21, and (Z)-Pm has to 

be attributed to the relatively lower electrophilicity of the aryl 

radicals Involved In the relevant SRNl propagation cycles. Most likely, in 

such cases the key step (3) 1s so slow that competltlve pathways for the 

aryl radicals can overcome the substltutlon-product-formlng coupling with 

the nucleophile. In previous papers,20-23 we have often underlined that rn 

SRNl reactions on diazosulfides main competing paths for aryl radicals 

are: a) hydrogen atom transfer from the medium or electron transfer from 

whichever reducing species present (followed by protonatlon of the ensulng 
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15 cm from the reaction ftask (Pyrex), an appropnatefy posnroned fan served to matntarn the reaction temperature 

around 25 ‘C The end of reackon was fudged by ceasing of nrtrogen evolution and/or TLC anafysls. Usual work-up 

involved pounng of the reaction mocture into 1ce/3% HCI followed by extraction wtth ether and washing of the combined 

extracts wtth bnne In the case of the expenment on (Z)-2n the reaction mrxture was diluted Hnth water and the pH 

adjusted to neutrakty wRh 3% HCI After drying of the ether extracts (Na2S04) the sofvent and the excess 2,4- 

pentanedione was dlstrlfed off n a rotary evaporator (60 ‘C, 5-10 mmHg) Column chromatography on s~kca gel of the 

residue (petroleum ether and petroleum ether-dichloromethane msrtures of graduatfy increasmg pofanty as ekJatIt) 

gave pure 3-aryl-2,4-pentanediones 3 in vanabfe yields (see Table) 

3-ANI-2.4-Dent~ 3 ‘H NMR analysis revealed that in CDCl, sotution all the isolated compounds 3 emst 

only as enol tautomers 41 

3-(4-Nrtrophenyf)-2,4-pentanedlone 3a m p 119 8-121 0 “C (EtCH) (lrt ,14 m p 119 “C) 

3-(4-Cyanophenyf)-2,4-pentanedione3b m p 146 7-147 6 “C (benzne) (In ,15 m p 145-150 ‘C) 

3-(4-Benzoylphenyf)-2,4-pentanedrone X m p 126 9-127 2 “C (benme) (V ,17 m p 131 ‘C) 

3-(4-Acetylphenyl)-2,4-pentanedrone 3d m p 97 4-98 1 “C (petroleum ether) (In ,14 98 “C) 

3-(4-Sromqphenyl-2,4--pentenedrone 36 m p 112 9-113 3 “C (petrofeum ether), ‘H NMR, 6 1 89 (6H, s), 2 64 

(3H, S), 7 31 and 8 00 (2H each, AA’BB’, J 8 2 Hz), and 16 71 (lH, s) 

3-(4-Methoxyphenyf)-2,4-pentanedlone 31 m p 66 5-69 5 ‘C (petroleum ether) (W ,14 m p 70 ‘C) 

3-(3-N~~enyl)-2,4-pentenedrone 3~ m p 77 9-78 1 “C (benzme), ‘H NMR, 6 1 90 (6H, s), 7 53-7 65 (2H m), 

8 05-8 32 (2H, m), and 16 76 (iH,s) 

3-(3-Cyanophenyf)-2,4-pentanedrone 3h m p 108 O-109 3 “C (benzme) (N ,15 m p 108 ‘C) 

3-(3-Se~/vrphe~~-2,4-~n~ione 31 m p 90 3-90 8 “C (benzme) (V ,I4 104 “C), ‘H NMR, 6 1 92 (6H, s), 

7 33-7 68 (6H, m), 7 68-7 90 (3H, m), and 16 70 (1 H, s) 

3-(2-Nrtrophenyl)-2,4-pentanedlone 31 m p 68 l-69 1 “C (petroleum ether) (kt ,14 m p 67 “C) 

3-(2-Cyanophenyl)-2,4-pentanedrone 3k m p 92 8-94 0 ‘C (benzme) (W ,15 m p 92-94 ‘C) 

3-Phenyl-2,4-pentanededlone 31 m p 55 O-56 0 “C (petroleum ether) (kt ,14 m p 57 ‘C) 

3-(2-N8ph~~-2,4-pentenadrone 3m m p 88 9-89 9 “C (petroleum ether), ‘H NMR, 6 1 90 (6H, s), 7 20-7 95 

(7H, m), and 16 73 (1 H, s) 

3-~3-PylldL~-2,4-pentenedrone 3n oil which easily solIdfires on cookng in an Ice-bath, ‘H NMR, 6 1 90 (6H, s), 

7 30-7 60 (2H, m), 8 45-8 60 (2H, m), and 16 79 (1 H, s) 

E/ecfmcbem#x/ defermrnafrons Cyclic voftammetry, constant potential electroksis, and chronocoulometry were carned 

out usmg the same instrumentation and condkions described elsewhere 23 
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